Topic 1: Python and Basic Libraries
- one IDE Collab or Jupiter
- Modules
- Basics of Python
- datatypes
- and methods
- statements and intendation
- functions
- imp python topics with related to data analytics
- NymPY & Pandas
- Data Visualization (Matplotlib + Seaborn)
- exploratory data analysis
- Case Study
————————————————————————————
Topic 2: SQL, power bi/tableau, Math Refresher, Excel
1. Modules
2. Excel (Introduction to Excel and Formulas, Tables, Charts, and Statistical
3. Functions)
4. Excel (vlokup, indexmatch, hlookup, filters, slicers, dashboarding
5. data analysis with the excel, reports, goalseek, pivot tables, charts)
6. statistical functions in excel(count, countif.countifs,
7. sum, sumif, sumifs and avg, avgif, avgifs and max, maxif, maxifs and minif, min, minifs)
8. hyperlink, trim, proper, upper, lower, round, concatenate)
9. conditional formatting
——————————————————————————————-
10. SQL and Advanced SQL
11. ddl, dml, windowfunctions in sql
12. ddl
13. create, alter, drop
14. dml
15. select, insert, update, delete
16. tables creation, colleace, where and agg functions
17. groupby having,distinct, math functions in sql)
18. with postgressql database
19. one sql casestudy
20 window functions
21. rank, denserank, row, lead, lag
22. sum, min, max, count related to windows functions
——————————————————————————————-
23. power bi with power querry and dax
24. dataloading, power bi desktop
25. in dax calculated columns and measures
26. textfunctions, datetime functions, concatenate tables,
27. vizualizations and creating reports and dashboards in power bi
——————————————————————————————-
28. power querry
29. datacleaning, filling data, groupby, pivot columns
30. merging columns, datetime functions, time and duriation
31. text functions, seperating columns
——————————————————————————————-
32. Data Cleaning, Unstructured Data
33. Math Refresher ( Basics Statistics)
34. statistics
35. stats topics which were imp to data analytics
36. mean, median, mode, hypothesis tesing, quaratile,
37. datafilling, correlation, z test, t-test
———————————————————————————————
38. final projects for the data analytics
39. two projects
40. till here data analytics after this datascience part will come
Instructor
